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Finite Element Multistep Discretizations 
of Parabolic Boundary Value Problems 

By Milog Zlamal 

Abstract. The initial-boundary value problem for a linear parabolic equation in an in- 

finite cylinder under the Dirichlet boundary condition is solved by applying the finite 

element discretization in the space dimension and A0-stable multistep discretizations 

in time. No restriction on the ratio of the time and space increments is imposed. The 

methods are analyzed and bounds for the discretization error in the L2-norm are given. 

1. Introduction. The problem we are considering is the initial-boundary value 
problem 

au/at = Lu for (x, t) C Q2 x (0, 0O), 

(1.1) u = O on F x (O, oo), 

u(x, O) = g(x) in 2. 

Here, 

(.) Lu = 
N a (aix ?- a(x)u, 

(1.2) i,lai (i()aI) 
N N 

ai1(x) = a1i(x), ai,(x)ij > a , a = const > 0, a(x) > 0, 
i,j=l i=l1 

and x = (x1, - - *, XN) is a point of a bounded domain Q? in Euclidean N-space RN 

with a smooth boundary F. 
Before formulating (1.1) in the weak variational form, let us introduce some nota- 

tions. The norm 11 IIL2(2) of the space L2(2) and the scalar product are denoted by 

11 - 110 and (*, * respectively. Hm = W(m)(S2), m = 0, 1, * , denotes the Sobolev 
space defined by 

/ \~~21/2 
lIviiH = ( E |Dv11 ) llHtm ~ IID'vl 

Instead of lIvllHm, we write llvllm. HJ is the closure of D(Q), the set of infinitely 
differentiable functions with compact support in Q2, in the norm 11 Ill. The energy 
norm lvl1 is defined by IV12 = a(v, v),where a(v, w) is the energy bilinear functional 
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a(v, w) = Eai(x) 
- 

+ a(x)vw]dx J-I x 
t@)VJ x 

The weak form of (1.1) is to find for t > 0 the function u C Ho such that, besides 

the initial condition, it satisfies 

(1.3) (i, p)0 + a(u, p) V OHoj. 

A well-known approach for getting an approximate solution of the problem (1.1) 

consists in first applying the Galerkin principle to (1.3). Let S be a finite-dimensional 

subspace of Ho.e The Galerkin solution is the function U C S which satisfies 

(1.4) (U, p)0 + a(U, ip) = V Vp C S. 

The Galerkin formulation yields a system of ordinary differential equations in time. A 

suitable discretization in time will give a computable approximate solution of the problem 

(1.1). The choice of finite element subspaces for S and of Crank-Nicolson and other 

one step discretizations in time was considered in several papers published in recent 

years (see references in [9]). In [9], we chose for S finite-dimensional subspaces VP, 
of Ho which have the following approximation property: for any v C HP +1 n Ho, there 

exists a function v E VIP, such that 

(1.5) llv - blli < ChP+l-Illvllp+ 1, j = 0, 1, 

C being a constant independent of the small positive parameter h and of the function v. 

Finite element subspaces constructed first for special domains, later for arbitrary curved 

domains (see [8], [2], [10], [11]), possess this property. The parameter h is, in gen- 

eral, the maximum diameter of all elements. 
In this paper, we again choose the subspaces VhP for S, and we discretize (1.4) by 

a A0-stable linear multistep method. A0-stable linear multistep methods were introduced 

for ordinary differential equations by Cryer [3]. When we apply the multistep method 

(p, a), where 
v )v 

P() = Ex1 0', c >0, ? O(r)= E jI , 
j=0 j=O 

to the scalar equation x(t) = - Ax(t), x(O) = 1, the approximate values x' of x(nk) (k 

is the time increment) are determined by 0a x +l '= - kX2>SfOijXn+1. Ao-stability 
requires that xn 0 as n - oo for all positive X. This is fulfilled iff all roots 

j = 1, . .. , v, of the polynomial 

(1.6) P p(M ) ?+ r(U) 

satisfy 1t(T)j < 1 for every T > 0. 

Denote by Un the approximate values of U at the time level t = nk, n = 0, 1, , 

and assume that U?, Ul, - - *, Uv-l are given. If we apply the scheme (p, a) to (1.4), 

we get the recurrence relationship for Un: 
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(1.7) (? aiU+, *p ) + ka( u +, ()= 0 Vp C VP, n = 0, 1,*- 

Besides AO-stability, we require that the method (p, a) be stable in the sense of 

Dahlquist and of the order q > 1 and that the roots of the polynomial U(?) with mod- 

ulus equal to one be simple. Under the assumption that the solution of (1.1) is smooth 
enough, we prove the following bound which is uniform for v < n < ?? and which holds 

without any restriction on the ratio kh-F: 

v-1 
sup IIul-uni0? Iu - Un10 hP1kt)lgIwj SUp llu _un lo< C E iilU X- uilo + (hP + 1+kq)log_kllgllm; 

v<n<oo o k 

here un are the exact values u(x, nk). 
To see what computations the relationship (1.7) represents, let us choose a basis 

vl, , vl of VhP (of course, in fmiite element subspaces, we do not choose an arbitrary 
basis). Let M be the so-called mass matrix, M = {(vi, vj)o}i,j=1, and K the stiffness 
matrix, K = {a(vi, vj)}l,11. Both these matrices are positive definite. If v = 

(vl, * * T ,v1j" (the superscript T denotes transposition) and Un = (af)Tv, where an 

(abln * * *,7n)T, then setting in (1.7) the basis functions v1, * *, v1 for (p, we get 

v 

(1.8) y(aI? + gjkK)2+j =O, n = O, 1,. 
j=O 

Evidently, at every time step we have to solve a linear system with the same matrix 

B = cyVM + (vkK. This matrix is positive definite (from AO-stability it follows ov > 0; 
see [3, Theorem 3.1]) sparse, banded,and its condition number does not grow too fast. 
In the case of finite element subspaces, it follows that 

(1.9) cond (B) = O(kh-2). 

Multistep methods require the determination of starting values U0, * U-l 

and it is desirable that these values be calculated to an accuracy as high as the local 

accuracy of the method. This disadvantage of multistep methods can be overcome, at 
least for v small (v < 4), by computing U?, - - *, Uv by the Crank-Nicolson (i.e., 
trapezoidal) method or by the Calahan method (a third order one-step method, see [9]) 
and using a step sufficiently small with respect to the step k of the main method. 

For simplicity, we restricted ourselves to the homogeneous problem (1.1). The 
generalization of (1.7) for the nonhomogeneous equation au/at = Lu + F(x, t) is 
immediate: 

( Un +j, < + ka ( Un +, (p= -k(E ,Fn I (x), (0 
j=0 V j=F j=F k 

Vp (E VP, Fn (x) = F(x, nk). 
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The same bound for the error can be proved if t runs through a finite interval (0, T). 

For the infinite interval (0, oo), such a bound cannot, of course, be proved unless some 

assumption on the growth of Ft(x, t) is imposed. 

The exact solution of the problem (1.1) has the property that 

(1.10) IIu(x, t)110 < exltilgilo 

for any g E L2(2). Here XI is the smallest (positive) eigenvalue of the operator -Lu. 

Under the additional assumptions that the roots of the polynomial p(?) with modulus 

equal to one are real and the modulus of all roots of the polynomial U(t) is less than 

one, we prove that scheme (1.7) preserves the asymptotic behavior characteristic of (1.1), 

again without placing any restriction on the ratio kh-1: if U' E L2 (Q2), j=O, * *, v - 1, 

then 11UV 110 decreases exponentially, 

(1.11) II Unl AI 7e Ce ? max IIU'110, ao = const > 0, n > v. 

The backward differentiation multistep methods (see [7, p. 242]) with the step number 

v < 6 possess all the above properties. 

2. Preliminaries. For simplicity, we assume that 

(2.1) ai(x), a(x), g(x) E CF(), F E Coo. 

We state some facts about the solution u(x, t) of (1.1). It is of the form Zi' gie-itXi(x) 

where Xi and Ei(x) are (positive) eigenvalues and (orthonormal) eigenfunctions, respectivel3 
of the problem 

(2.2) -0L4=X4, X Ir =, 

and gi are the Fourier coefficients of the initial value g(x). Ladyzenskaja [6, Chapter III, 

Section 17] showed that if g E Hm and 

(2.3) gIr = LgIr = * = L[(m-l)/2lgIr = 0, 

then u(x, t) E Hm for t > 0. Conversely, if u(x, t) C Htm for t > 0 then g E Htm and (2.3) 

is satisfied. The proof is based on two inequalities. The first holds for any series 

1- lIOA(): 

(2.4) || gii()| CExTg2 
i=1 m i-1 

(In the sequel, C is a generic constant, not necessarily the same in any two places, which 

does not depend on h, k, n, 1, I,- g.) Concerning the other, we need only the following 

consequence: if g C Hm and (2.3) is satisfied, then it holds that 

(2.5) E Wi= 1 m- 
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3. Convergence. The main results of the paper are contained in the following 

THEOREM. Let the linear multistep method (p, a) be stable in the sense of Dahl- 

quist, AO-stable and of the order q > 1, and let the roots of the polynomial a(Q) with 

modulus equal to one be simple. Let (1.2) and (2.1) hold and g satisfy (2.3) with m = 

max (p + 1, 2q) (this requirement is equivalent to the assumption u(x, t) E H' for 

t > 0). Then, for arbitrary h, k, the discretization error is bounded by 

(3.1) sup jun- uniio C[ lui - Uillo + (hP+l+kq)log ilgilmjj 
v<n<-o j-O 

If, in addition, the roots of the polynomial p(O) with modulus equal to one are real and 

the modulus of all roots of u(?) is less than one, then (1.1 1) holds for any U' E L2 (Q) 
0j-O -, v -l. 

Proof. We first write un in the form un = n + f7n with 7n E VP being the Ritz 

approximation of un, i.e., the orthogonal projection of un onto VPA -with the energy 

norm [a(-, )- 1/2 (several authors have used this decomposition; we learned it from 

Bramble, Thomee [1]). Hence, 

(3.2) a(ln, po) = a(un, So) ( Lun )O = (-n' p) V E VP 

and with respect to (1.5), we find (see, e.g., [101) that 

1 n110 l <aCP I ILun 11p 6- Chp l,lun llp P+ 

By means of (2.4) and (2.5), we immediately obtain 

(33) 11 tn 110 _< Chp + 1 llg llp + 1 

Therefore it is sufficient to prove for en = in - tr 

(3.4) max I Cen Ile C[ fE lle hP+ 1 + k-q)log lIgIlmJ 

If we use (3.2), we see that 

3.5) (E a-ii1n+, ip) + ka (E 1 j,n +ip =( c,o) V<EV", 
j=o o JO 

where 

v v 

= , (CZ,un n- kan +), con = En 

j=0 j0= 

Subtracting (1.7) from (3.5), we get 

(3.6) (E en +n , so) + ka (YE(3en+J,So) = (On -Jn S) VSoE vh 
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We write (3.6) in a matrix form. For this purpose, let w be the vector w = M- 1/2v 
(v is the basis vector; see Introduction) and let us set en = (en)Tw (notice that en = 

rn - u E VhP). Since (v, vT)O = M and a(v, VT) = K, we have (w, wT)O = I and 

a(w, wT) = M- 1"2KM- 1 /2. The matrix S = M- I1'2KM- 1/2 is symmetric and positive 

definite. Putting the components wi (i 1, * ,1) of the vector w for (p in (3.6), 

we get 
v 

E (cx1I + gjkS)en +j = Cn 
j=O 

where 

(37) nc = (7rn - co, w)0. 

Denote 

cx ?i 
(3.8) 5j(7) = / + pl , j = 0, ... , Iv (6>(T) -1), dn = (xj +?fvkS)Vcn 

(the matrix .,[ + f3vkS is positive definite since ctv > 0, v > 0). Then 

v 

(3.9) ? 5j(kS)en+j = dn 
j=O 

and this difference equation will be solved in the way described by Henrici [5, pp. 
242-244]. 

We define the coefficients yl(i-) (I = 0, 1, * ) by 

1 
(3.10) p 

= 
[6> (T) + iv- (T) ?t + * * * o(T)7 ] =T(T)?()? + . + 

Similarly as in [5, p. 242], we can prove the estimate 

(3.11) IY1(T)I AC, r>0, 1=0, 1,' * * 

(we leave out the proof even when it is not a trivial matter). We also get the identity 
(see [5, (5-160), p. 243]) 

1, 1 =0, 
(3.12) 6v(T)'Yi(T) +6 v1(7)yl_1(r) + +60(T)tYi-XT) {o= 1>0 

Now we write (3.9) with n - v - 1 instead of n, multiply by yl(kS) and sum for 1 = 

0, 1, * , n - v. After some rearranging and using (3.12), we obtain (see [5, p. 243]) 

n -[6v- 1(kS)yn _(kS) + ? * - 6 0(kS)'Y -2v+1(kS)] ev1 

(3.13) n-v 
- 60(kS)yn-v(kS)e0 + E j(kS)dn-v 

1=0 

The coefficients 5j(z) are bounded functions in the interval (0, oo). Therefore, 116j(kS)II1 
maxA 15j(kA)I (by 11- 11 we denote the Euclidean norm of a vector or a matrix) where A 
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are the eigenvalues of S. These are positive, consequently 1181(kS)II < supo<,r 161(r)l = 

0(1). The coefficients yl(r) are bounded by (3.11), hence llyl(kS)II = 0(1), 1 = 0, 
1, * . . Furthermore, the starting errors are bounded by 

lelilo = iiu' - U' - 'I110 < Ilu' - U'i1o + 110'IIo S iiu' - Uillo + ChP' ligil+1 - 

Hence 
v- I 

E Ileill < ? li - U 110 + ChP"+ 1Igllm 
=o j=0 

AlsoId < 11(Q,I + ,B3kS)- I 11 11 Icnl < c-T llcnll. Thus, we see that from (3.13) it 
follows 

v-1I n-v \ 

IIen ? < C IEIIe ?l + ll1crll). 
j=O r=0 

Since 

IIen 112 = (en)T(w, WT)0en = Ilen 112 

we have 
/v-1I n-v \ 

(3.14) ilen 11 AC 2: Ilui -Ui 110 + hP + llgllm + E IlCrl. 
i =0 r=O 

We need a bound for licrll. Cr is of the form (3.7). If f eL2() andf= ?Tw e 

VhP is the orthogonal projection of f onto VhP with the norm 11 -10, we easily find that 
f = (f, w)O and that Ilf110 < Ilf 110. Since Ilfii0 = 11f 11, we have Ilfll < Ilf 110. Therefore, 

(3.15) IcCrIl _< 17rllo + IlIcrllo. 

To estimate 117rrll0, we use the assumption that the scheme (p, a) is of the order 
q. It means that for any function y(t) c C(s), s < q + 1, it holds that 

(3.16) 
0 

= k max Iy(s)(tx) , jxy(t ?jk) - k E g3j'(t ?jik) 0< ov 
j=O j =0<<k 

(it follows from the formula (5.178) in [5, p. 248]). Set y(t) = eit, S = q + 1. After 

dividing by exit, we get 

v 
(o, ? f31kX1)&jkXi = Q(kq+ I Xq + 1). 

j=0 

The Fourier coefficients Tr of Tr are evidently equal to 

-rkX 3k1eki 
e ig i (cj + ?3 kXi) e 

j=0 

Therefore, 
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(7Kr)2 < C ik )g2 

-2rkX-k 12k X i2 -k1 Since e kXik2X2 < e k1 (e-r kX)2 ? r2erke l if r > 1 (due to xe-ox < 

(ea)1 < (2a) -1), we have (7ri)2 < Cr-- 2 e lk2qX3q 3 and 

(3.17) II(II Z(<)2 2 e r kx2llgll,Jg2 r> 1. 
i=l1 

Concerning 7r0, we use (3.16) with s = q and we get 

(3.18) I1r0 I < Ck m 

The estimates for 11COrlo can be obtained in a similar way. Set zr = 2,i0cx_ur+J 

and write zr as the sum Xr + yr where yr is the Ritz approximation of zr. Then 

Ilxr 110 < ChP + 1 IlZ 1 . + I Since 71n is the Ritz approximation of u', we have yr = 

=O aqj?r+i 
and xr = i= jr+j = c,r, hence 

(3.19) 11 c"r 110 < Chp + I 
IZ r 11+l' 

I 
,e-(r+j)kX e -rkX. '5~c~e-jkX1. 

The Fourier coefficients Z are equal to _ce ( igi= e 1g-=o 
Because of the consistency of the scheme (p, a), it follows that 1i 0a. = 0. Therefore, 

-IkX (42 C0rx Ib 
=0, c ie = O(kXj), consequently (z')2 < -2rkli(kXi)2g2; by means of (3.19), 

we find in the same way as before that 

(3.20)~ ~~11C" 1lr I Cr- 2 1 Al2( +l)llgll2 > l 

(3.20) erI 
h I M r>1 

11 co? ll_ Ch2 (P + 1 ) 11 g112 

(3.17), (3.18), (3.20) and (3.15) give 

llCrll < Cr- le /2rkX 1(hP+l + k q)llgllm r > I, 

Il coll < C(hP + + kq)llgllm. 

We come back to (3.14). If we find out that 

00 ~~~~~~~~~~1 
liCr 1l < C(hp + 1 + kq)log klIgIlm g 

r 1 

the bound (3.1) is proved. For this purpose, it is sufficient to realize that 

r e -e/2rkXl = 

i 
r-1(e- k l )r = -log(, 1-e ) = o(log k). 

r=1 r=l 

To prove the second part of the Theorem, we need a better estimate of the coef- 

ficients y,(r). According to our assumptions, the roots X of p(?) with modulus equal 
to one are simple and real (i.e., X = ? 1). The associated roots t(r) of the polynomial 

p(?) defined by (1.6) have the expansion t(r) = X + a1r + O(r2),with a1 = - u(X)/p'(X) 
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= 0 (since a(X) = 0 means that X would be a root of p(?)). Therefore, 1('r)I = ?I + X- lal r 
+ 0(r2)l. The growth parameter a = X - 1a is different from zero and real, hence 1(r)1 
= [1 + 2ar + 0(r2)] 1/2. As a must be negative (otherwise 1(r)lI > 1), we see that, for r 
sufficiently small, 1(r)j < 1 - cr, c = ?1al > 0. The other roots of p(?) have modulus 

less than one for r > 0. On the basis of these facts, we can prove that l'y1(r)I < 

C(I - ?6cr)' for 0 <Kr < ri if r1 is a sufficiently small number. In the interval (r1, o?), 

it follows easily (from the assumption that the modulus of all roots of u(?) is less than 

one) that ky1(r)l < C(I - i)', 0 < K < 1. Hence 

1zy(r)l < C[max(I - ? cr, 1 - t)]', r > 0, 

and, because the eigenvalues of the matrix kS are bounded from below by kX11, it holds 

-for k sufficiently small that 

(3.21) 1l,y(kS)ll < C(1 - 6cX 1 k) ? Cectolk, a = /4cX, > 0. 

To complete the proof, we set U' = (an)Tw and get (in the same way as we got 

(3.13)) 

an -[V-1 (kS)7n_v(kS) + * ? 6 0(kS)Yn- 2v+ 1(kS)] av1 

- - 0(kS)ynv(kS)a 

The estimate (1.12) follows immediately from (3.21). 

4. Some Remarks. 1. To get the estimate (1.9) for the condition number of the 

matrix B = cttM + OvkK, we assume the following additional properties of the basis 

{v1,*** *,v} of the space VP': if ep = xTv E VP, then 

(a) ch-N pI?li 1112 A Ch-NlPlfl1, c = const > 0, 

(b) a(<o, <o) < Ch - 2 11( llo .1 

The finite element subspaces used in applications possess these properties. 

Let A be an eigenvalue of the matrix B and x the corresponding eigenvector. We 

have cyMx + 3vkKx = Ax; multiplying this equation by xT and setting p = xTv, we get 

A 
ll(Pll 

vk 
a (p, ~p) 

v 
11 X112 i IXI12 

Hence 

Amax ? C(1 + kh-2)hN, Amin > c1hN, c1 = const > 0, 

and, if we exclude the uninteresting case kh-2 0, we have cond(B) = Ama./Amin = 

0(kh -2) 

2. The backward differentiation methods with v = q < 6 are stable in the sense 
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of Dahlquist, the only root of p(?) with modulus equal to one is the principal root 
t = 1 (see Cryer [4] ), and they are AO-stable (actually, they are A(a)-stable with 900 > 
a > 180, see [7, p. 242]). Further, the only root of u(t) is zero. Hence, these methods 
fulfill all assumptions of the Theorem. 

3. It. is known (see [7, p. 243]) that the implicit R-stage Runge-Kutta methods of 
order 2R are A-stable. It will be shown elsewhere that if we discretize (1.4) by means 
of such a method, the error is bounded by 

sup llun - Un 10 < iu0 - U 110 + C(hP+1 + k2R)og 1 11911 
1 <n<oo 

under the assumption that g(x) satisfies (2.3) with m = max (p + 1, 4R). 
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